1 Kombinatorik

Anordnungen Permutation

geordnete Stichprobe Variation ungeordnete Stichprobe Kombination

1.1 ohne Zurücklegen/Wiederholen

P(n) = n!Permutation

Permutation Gruppen $P(n; n_1, ..., n_k) = \frac{n!}{n_1! \times ... n_k!}$ Variation $V(n, k) = \frac{n!}{(n-k)!}$ Kombination $C(n, k) = \binom{n}{k}$ Binomialkoeffizient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

falls $k > \frac{n}{2}$

1.1.1 Anwendung

x in Gruppe sitzen abwechselnd sitzen

1.2 mit Zurücklegen/Wiederholen

 $V_W(n,k) = n^k$ Variation

Kombination $C_W(n,k) = \binom{n+k-1}{k}$

2 Elementare Wahrscheinlichkeitsrechnung

Ereignis Ausgang eines Experiments

Menge aller Ereignisse Ereignisraum

Elementarereignis Teilmenge des Ereignisraums

Gewinnerwartung Wahrscheinlichkeit × Gewinn

2.1 Laplace Wahrscheinlichkeit

alle Ereignisse gleich wahrscheinlich

|günstige Ereignisse| |mögliche Ereignisse P(E) =Wahrscheinlichkeit

Anzahl Ereignisse $|P(\Omega)|$ Gegenwahrscheinlichkeit 1 - P(X)

2.2 Kolmogoroff Wahrscheinlichkeit

alle Ereignisse unterschiedlich wahrscheinlich

$$P(A) = \sum_{\omega \in A} P(\omega)$$

2.3 bedingte Wahrscheinlichkeit

A und B $P(A \cap B) = \frac{|A \cap B|}{|\Omega|}$ A wenn B $P(B|A) = \frac{P(A \cap B)}{P(A)}$

2.3.1 Stochastische Unabhängigkeit

wenn gilt: $P(A \cap B) = P(A) \times P(B)$

2.3.2 totale Wahrscheinlichkeit

Alle Wege zusammengerechnet

$$P(B) = \sum_{i=1}^{n} P(A_i \cap B) = \sum_{i=1}^{n} P(A_i) \times P(B \mid A_i)$$

2.3.3 Satz von Bayes

erlaubt das umkehren der Schlussfolgerung.

$$P(A_j \mid B) = \frac{A_j \cap B}{P(B)} = \frac{P(A_j) \times P(B \mid A_j)}{P(B)}$$

2.4 geometrische Wahrscheinlichkeit

nur anwendbar wenn gleiche Maße gleiche Wahrscheinlichkeiten haben. (Laplace)

 $P(A) = \frac{MaB(A)}{MaB(\Omega)}$

bei (a+b) < 2 Linie von a=2 bis b=2

2.5 Zufallsvariabeln

X: Zufallsvariable

F: Verteilungsfunktion

f: Wahrscheinlichkeitsfkt(diskret) / Dichte(stetig)

disket: endlich viele Werte

stetig: unendlich viele Werte, Kommastellen

$$F(X) = \sum_{x_i \le x} f(x_i) = P(X \le x)$$

$$E(X) = \sum_{i} x_i \times P(X = x_i)$$

$$F(x = 5) = f(1) + f(2) + f(3) + \dots$$

 $F(x) = 0$ für $x < a$ $F(x) = 1$ für $x \ge b$

2.5.1 Notwendige Bedingungen für f, F

allgemein

 $f(x) \ge 0$ $F(x) \in [0, 1]$

diskret

 $\sum_{x_i} f(x_i) = 1 \ 0 \le f(x_i) = P(X = x_i) \le 1$ stetig

 $\int_{-\infty}^{+\infty} f(x)dx = 1$

2.5.2 Rechenregeln

allgemein

 $P(X \le x) = F(x)$

 $P(X \ge x) = 1 - P(x \le X) = 1 - F(x)$

diskret

 $P(X < x_i) = P(x_{i-1}) = F(x_{i-1})$

P(X = x) = f(x)

stetig

P(X < x) = P(X < x) = F(x)

P(X = x) = 0

2.5.3 Erwartungswert

beschreibt die Zahl, die die Zufallsvariable im Mittel annimmt.

diskret

$$E(x) = \sum_{i} x_i \times P(X = x_i)$$

stetig

$$E(x) = \int_{-\infty}^{\infty} x \times f(x) dx$$

2.5.4 Binomialverteilung

nur bei unabhängigen Versuchen mit bool Ergebnissen.

$$P(x) = \binom{n}{x} * p^x * (1-p)^{n-x}$$

3 Numerik

3.1 Bisektionsverfahren

f stetig auf [a, b] mit f(a) * f(b) < 0Grenze auf Seite mit Vorzeichenwechsel halbieren. Verkleinern bis genau genug.

$$\lim_{i\to\infty} \tfrac{b-a}{2^n}$$

3.2 Regula Falsi

Sekante durch f(a)&f(b) legen. Nullstelle neuer Teilungspunkt.

Nullstelle der Sekante bestimmen: $x = a - \frac{f(a)(b-a)}{f(b)-f(a)}$

3.3 Newton Verfahren

Nullstelle der Tangente von f(x) als neuer Teilungspunkt.

$$f(x), x_0(f'(x_0) \neq 0)$$

Punktsteigungsform: $\frac{y-f(x_0)}{x-x_0} = f'(x_0)$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

3.4 Interpolation und Ausgleichsrechnung

3.4.1 Interpolation

exakt

3.4.2 Ausgleichsrechnung

bestmögliche Annäherung an gegebene Wertepaare mit Hilfe einer stetigen Funktion

Gesucht ist $f(x) = a \times x + b$

Methode der kleinsten Fehlerquadrate

$$\sum x_i = S_x \qquad \sum y_i = S_y$$

$$\sum x_i * y_i = S_{xy} \qquad \sum x_i^2 = S_{x^2}$$

$$\boxed{n \quad x_i \quad y_i \quad S_x \quad S_y \quad S_{xy} \quad S_{x^2}}$$

$$\boxed{1 \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots}$$

$$a = \frac{nS_{xy} - S_y \times S_x}{nS_{x^2} - S_x \times S_x} \quad b = \frac{S_y - aS_x}{n}$$

Notwendige Bedingung: $\frac{dF}{da} = \frac{dF}{db} = \frac{dF}{dc} = 0$

3.4.3 Fehler

absoluter Fehler
$$\left| \begin{array}{c} X - \tilde{\mathbf{X}} \\ \text{relativer Fehler} \end{array} \right|$$

4 Analysis

4.1 Differentialrechnung

4.1.1 Ableitungsregeln

f(x)	f'(x)
C	0
x	1
x^n	$n * x^{n-1}$
c * g(x)	c * g'(x)
g(x) + h(x)	g'(x) + h'(x)
g(x) * h(x)	g'(x) * h(x) + g(x) * h'(x)
$rac{g(x)}{h(x)}$	$\frac{h(x)*g'(x)-g(x)*h'(x)}{(h(x))^2}$
g(h(x))	g'(h(x)) * h'(x)

4.1.2 Bekannte Ableitungen

f(x)	f'(x)
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$-\sin(x)$	$-\cos(x)$
$-\cos(x)$	$\sin(x)$
$\tan(x)$	$\frac{1}{\cos^2(x)}$
$\cot(x)$	$\frac{-1}{\sin^2(x)}$
e^x	e^x
a^x	$\ln a * a^x$
$\ln(x^n)$	$\frac{1}{x^n} * (x^n)'$
$\log_a x$	$\frac{1}{\ln a * x}$

Nullstelle einer e Funktion bestimmen mit ln

4.2 Integralrechung

a	$a \times x + C$
x^n	$\frac{x^{n+1}}{n+} + C$
$\frac{1}{x}$	$\ln x + C$
$\frac{x}{a^x}$	$\frac{a^x}{\ln a} + C$
$\ln x$	$x * \ln x - x + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$
tan(x)	$-\ln \cos(x) + C$
e^x	$e^x + C$

5 Weiteres

Kreisfläche $r \times \pi^2$

Zeitpunkt bestimmen Funktion gleichsetzen