1 Integralrechnung

 $\begin{array}{ll} \textbf{echt gebrochen} & \textbf{Z\"{a}hlergrad} < \textbf{Nennergrad} \\ \textbf{unecht gebrochen} & \textbf{Z\"{a}hlergrad} \geq \textbf{Nennergrad} \end{array}$

Untersumme $\sum_{i=1}^{n} f(x_{i-1} * \Delta x)$

Obersumme $\sum_{i=1}^{n} f(x_i * \Delta x)$

1.1 unbestimmte Integrals

$$\int f(x)dx = F(x) + C$$

1.2 bestimmte Integrale

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

1.3 Grundintegrale

0	C	
1	x + C	
dx	1	
$m \cdot x^{n-1}$	$\frac{\frac{m}{n+1} \cdot x^{n+1} + C}{}$	wenn $n \neq -1$
x^n	$\frac{1}{n+1} \cdot x + C$	sonst $\ln x $
$\frac{\frac{1}{x}}{e^{kx}}$	$\ln x + C$	
e^{kx}	$\frac{1}{k}e^{kx} + C$	
$\sin x$	$-\cos x + C$	
$\cos x$	$\sin x + C$	
$-\sin x$	$\cos x + C$	
$\frac{1}{\cos^2 x}$	$\tan x + C$	
\sqrt{x}	$\frac{\frac{2}{3}x^{\frac{3}{2}} + C}{\frac{1}{k}e^{kx} + C}$	
e^{kx}	$\frac{1}{k}e^{kx} + C$	

1.4 Elementare Integrationsregeln

Faktorregel Ein konstanter Faktor darf vor das Integral gezogen werden.

$$\int_{a}^{b} C \cdot f(x) dx = C \cdot \int_{a}^{b} f(x) dx$$

Summenregel Eine endliche Summe von Funktionen darf gliedweise integriert werden.

$$\int_{a}^{b} (f_1(x) + \dots + f_n(x)) dx = \int_{a}^{b} f_1(x) dx + \dots + \int_{a}^{b} f_n(x) dx$$

Vertauschungsregel Vertauschen der Integrationsgrenzen bewirkt einen Vorzeichenwechsel des Integrals.

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Nullintegral Sind die Grenzen gleich ist das Integral = 0.

$$\int_{a}^{a} f(x)dx = 0$$

Zerlegung in Teilintegrale Die Fläche unter dem Graphen lässt sich in mehrere Teilflächen aufteilen.

$$I = I_1 + I_2$$

1.5 Integrationsmethoden

Wenn die Stammfunktion nicht durch Grundintegrale gebildet werden kann.

1.5.1 Integration durch Substitution

$\int f(ax+b)dx$	$\int f(x) \cdot f'(x) dx$
u = ax + b	u = f(x)
$dx = \frac{du}{a}$	$dx = \frac{du}{f'(x)}$
$\frac{1}{a} \cdot \int f(u) du$	$\frac{1}{2}[f(x)]^{2} + C$
$\int [f(x)]^n \cdot f'(x) dx$	$\int f[g(x)] \cdot g'(x) dx$
$(n \neq -1) u = f(x)$	u = g(x)
$dx = \frac{du}{f'(x)}$	$dx = \frac{du}{q'(x)}$
$\frac{1}{n+1}[f(x)]^{(n+1)} + C$	$\int f(u)du$
$\int \frac{f'(x)}{f(x)} dx$	$\int f(x; \sqrt{a^2 - x^2}) dx$
u = f(x)	$x = a \cdot \sin u$
$dx = \frac{du}{f'(x)}$	$dx = a \cdot \cos u du$
$\ln f(x) + C$	$\sqrt{a^2 - x^2} = a \cdot \cos u$
$\int f(\sin x; \cos x) dx$	$\int f(x; \sqrt{x^2 - a^2}) dx$
$u = \tan(x \div 2)$	$x = a \cdot \cosh u$
$dx = \frac{2}{1+u^2}du$	$dx = a \cdot \sinh u du$
$\sin x = \frac{2u}{1+u^2}$	$\sqrt{x^2 - a^2} = a \cdot \sinh u$
$\cos x = \frac{1 - u^2}{1 + u^2}$	

1.5.2 Partielle Integration

$$\int u(x) \cdot v'(x) dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) dx$$
wenn

- Die Stammfunktion von v'(x) lässt sich leichter finden
- Das enstehende Integral ist einfacher lösbar

1.5.3 Integration durch Partialbruchzerlegung

- 1. Polynomdivision (falls Funktion unecht gebrochen)
- 2. Nullstellen des Nenners berechnen
- 3. Partialbruch aufstellen
- 4. Nullstellen zuordnen
- 5. Brüche gleichnamig machen

6. Gleichungssystem lösen

Bei doppelter Nullstelle: $\frac{A}{x-n} + \frac{B}{(x-n)^2}$

Beispiel:

$$\int \frac{dx}{x^2 - x - 12}$$

$$0 = x^2 - x - 12 \mid \text{Faktorisieren}$$

$$0 = (x + 3)(x - 4)$$

$$x_1 = -3; x_2 = 4$$

$$\frac{1}{x^2 - x - 12} = \frac{A}{(x+3)} + \frac{B}{(x-4)}$$

$$\frac{1}{(x+3)(x-4)} = \frac{A(x-4)}{(x+3)(x-4)} + \frac{B(x+3)}{(x+3)(x-4)}$$

$$1 = A(x - 4) + B(x + 3)$$

$$1 = A(-3 - 4) \mid 1 = B(4 + 3)$$

$$A = -\frac{1}{7} \mid B = \frac{1}{7}$$

$$= -\frac{1}{7} \int \frac{dx}{x+3} + \frac{1}{7} \int \frac{dx}{x-4}$$

 $=-\frac{1}{7} \cdot \ln|x+3| + \frac{1}{7} \cdot \ln|x-4| + C$

1.6 Anwendung

Fläche zwischen f(x) und Achse Integrale mit Grenzen zwischen Schnittstellen mit Achse, addiert Fläche zwischen zwei Funktionen

- Schnittpunkte als Grenze verwenden
- absolute Differenz der Integrale ist Fläche

Volumen rotationssymmetrischer Körper

$$V = \pi \cdot \int_{a}^{b} [f(x)]^{2} dx$$

Bogenlänge einer Kurve

$$\int_{0}^{b} \sqrt{1 + (y')^2} dx$$

Mittelwertberechnung

diskret:
$$\bar{y} = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$$

linearer:
$$\bar{y} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

quadratisch:
$$\bar{y} = \sqrt{\frac{1}{b-a} \int_{a}^{b} [f(x)]^2 dx}$$

2 Folgen und Reihen

2.1 Eigenschaften

2.1.1 Monotonie

${f steigend}$	$a_i \le a_{i+1}$
streng steigend	$a < a_{i+1}$
fallend	$a_i \ge a_{i+1}$
streng fallend	$a_i > a_{i+1}$

2.1.2 Beschränktheit / Schranken

nach oben/Supremum $a_i \leq S$ nach unten/Infimum $a_i \geq S$

2.2 Konvergenzkriterien

Notwendiges/Nullfolgen-kriterium $\lim_{i\to\infty} a_i = 0$ Hinreichende Kriterien:

Quotienten	Wurzel	
$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = q$	$\lim_{n \to \infty} \sqrt[n]{ a_n } = q$	
$a_n \neq 0$	q < 1: konvergent	
q < 1: konvergent	q > 1: divergent	
q > 1: divergent	q = 1: keine Aussage	
q = 1: keine Aussage		
Majoranten	Minoranten	
Vergleich mit bekannt	Vergleich mit bekannt	
konvergenter Reihe	divergenter Reihe	
$a_n \leq b_n$: konvergent	$a_n \geq b_n$: divergent	
${f Leibniz}$	Integral	
Alternierende Reihe	$\int_{n=a}^{\infty} f(n) \to \int_{a}^{\infty} f(x) dx$	
konvergent wenn	konvergent wenn	
$ a_1 > a_2 > a_3 > \dots$	existiert	

2.3 Summenwert

wenn der Summenwert existiert, ist die Reihe gleichzeitig konvergent

- 1. aufteilen in Partialbrüche
- 2. $s_n = \sum_{i=1}^n \frac{A}{0_A} + \frac{B}{0_B}$
- 3. $\lim_{n\to\infty} s_n$

2.4 Potenzreihen

Konvergenzradius $r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

 x^n hier ignorieren \uparrow

Mac Laurin $f(x) = f(0) = \sum_{n=0}^{\infty} \frac{f^{(n)(0)}}{n!} \cdot x^n$

Taylor $f(x) = \sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!} \cdot (x - x_0)^n$

Ableitungen bilden bis Muster erkennbar, x_0 in diese einsetzen bis Muster erkennbar, diese einsetzen in Bildungsgesetz.

2.5 Konvergenzbereich

- Konvergenzradius berechnen
- An Randpunkten Konvergenz bestimmen
- (divergent: <; konvergent: <)
- Bsp: $-r < x \le r$

3 Partielle Differentation

gleiche Regeln wie bei der normalen Ableitung, abzuleitende Komponente ableiten, andere ignorieren/entfernen.

2 von 4

Regeln	f(x)	f'(x)	
Konstante	C	0	
von x	x	1	
Potenzregel	x^n	$n \cdot x^{n-1}$	
Faktorregel	$c \cdot g(x)$	$c \cdot g'(x)$	
Summenregel	g(x) + h(x)	g'(x) + h'(x)	
Produktregel	$g(x) \cdot h(x)$	$g'(x) \cdot h(x)$	
		$+g(x)\cdot h'(x)$	
Quotientenregel	$\frac{g(x)}{h(x)}$	$\frac{h(x)\cdot g'(x) - g(x)\cdot h'(x)}{(h(x))^2}$	
Kettenregel	g(h(x))	$g'(h(x)) \cdot h'(x)$	
Kehrwertregel	$\frac{1}{g(x)}$	$\frac{g'(x)}{g(x)^2}$	

bekannte Ableitungen

	0				
f(x)	$\mathbf{f}'(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f}'(\mathbf{x})$		
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\sin(x)$	$\cos(x)$		
$\sqrt[n]{x}$	$\frac{1}{n(\sqrt[n]{x^{n-1}})}$	$-\cos(x)$	$\sin(x)$		
e^x	e^x	tan(x)	$\frac{1}{\cos^2(x)}$		
$\frac{1}{k}e^{kx}$	e^{kx}	$\cot(x)$	$\frac{-1}{\sin^2(x)}$		
$\ln(x^n)$	$\frac{1}{x^n} \cdot (x^n)'$	$x \cdot \ln y $	$\frac{x}{y}$		
$\log_a x$	$\frac{1}{\ln a \cdot x}$	$\ln u(x) $	$\frac{u'(x)}{u(x)}$		
a^x	$\ln a \cdot a^x$	$\frac{1}{2}(u(x))^2$	$u'(x) \cdot u(x)$		

Funktionszuwachs $\Delta f = f(x_0 + dx; y_0 + dy)$ $f(x_0; y_0)$

totales Differential $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$

4 Vektoranalysis

Betrag
$$|\vec{a}| = \sqrt{\sum_{i=1}^{n} |a_i|^2}$$

Normierung $\vec{e_a} = \frac{1}{|\vec{a}|} \vec{a}$

Addition/Subtraktion
$$\vec{a} \pm \vec{b} = \left(egin{array}{c} a_1 \pm b_2 \\ a_2 \pm b_2 \\ a_3 \pm b_3 \end{array} \right)$$

Skalarmultiplikation
$$\lambda \cdot \vec{b} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \lambda a_3 \end{pmatrix}$$

Kreuzprodukt
$$\vec{a} imes \vec{b} = \left(egin{array}{c} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{array}
ight)$$

Skalarprodukt $\vec{a} \cdot \vec{b} = a_1 b_1 + \dots$

Tangenteneinheitsvektor $\vec{T} = \frac{1}{|\vec{r}'|} \vec{r}'$

Normaleinheitsvektor $ec{N} = rac{1}{|ec{T'}|} ec{T'}$

Krümmung $K = \left| \frac{d\vec{T}}{ds} \right|$

Radius der Krümmung $\delta = \frac{1}{K}$

Ortsvektor Der Ortsvektor \overrightarrow{OA} von A hat dieselben Koordinaten wie A

Tangentenvektor partiell abgeleiteter Ortsvektor

4.1 Skalarfelder

Verteilung von skalaren Eigenschaften (z.B. Dichte, Temperatur, Konzentration) im Raum bzw. in der

Nabla Operator
$$\vec{
abla} = \left(egin{array}{c} rac{\partial}{\partial x} \\ rac{\partial}{\partial y} \\ rac{\partial}{\partial z} \end{array}
ight)$$

Gradient in der Fläche $grad\phi = \begin{pmatrix} \frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y} \end{pmatrix}$ Gradient im Raum $grad\phi = \vec{\nabla}\phi = \begin{pmatrix} \frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y} \\ \frac{\partial \phi}{\partial y} \end{pmatrix}$

4.2 Vektorfelder

z.B. Bewegung von Partikeln in einem Geschwin-

in der Fläche
$$\vec{F}(x;y) = \left(egin{array}{c} F_x(x;y) \\ F_y(x;y) \end{array}
ight)$$

im Raum
$$\vec{F}(x;y;z) = \begin{pmatrix} F_x(x;y;z) \\ F_y(x;y;z) \\ F_z(x;y;z) \end{pmatrix}$$

4.2.1 Divergenz

$$div(\vec{F}) = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$
$$div(\vec{F}) = 0 \text{ Quellenfrei}$$

 $div(\vec{F}) > 0$ Quelle $div(\vec{F}) < 0$ Senke

$$\textbf{Rotation } rot(\vec{F}) = \vec{\nabla} \times \vec{F} = \left(\begin{array}{c} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_z}{\partial y} \end{array} \right)$$

Wirbelfrei $rot(\vec{F}) = \vec{0}$

4.2.2 Fluß eines Vektorfeldes

Die Teilflächen einzeln betrachten, addieren $\int_{x=x<}^{x>} \int_{y=y<}^{y>} F dy dx$

4.3 Linienintegrale

$$\int\limits_{C} \vec{F} \cdot d\vec{r} = \int\limits_{t_{1}}^{t_{2}} (\vec{F} \cdot \dot{\vec{r}}) dt = \int\limits_{t_{1}}^{t_{2}} \phi(x; y)$$

4.3.1 Eigenschaften

Richtungsumkehr $\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}$

Geschlossener Integrationsweg gemeinsamer Anfangs- und Endpunkt $\oint \vec{F} \cdot d\vec{r}$

4.3.2 Potentialfeld/konservativ

Wegunabhängigkeit

Integrabilitätsbedingungen

$$\begin{array}{l} \frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x}; \ \frac{\partial F_x}{\partial z} = \frac{\partial F_z}{\partial x}; \ \frac{\partial F_y}{\partial z} = \frac{\partial F_z}{\partial y} \\ \textbf{Potentialfunktion} \\ \phi(x;y;z) = \int \frac{\partial \phi}{\partial x} dx + \int \frac{\partial \phi}{\partial y} dy + \int \frac{\partial \phi}{\partial z} dz + C \end{array}$$

4.4 Koordinatensysteme

4.4.1 ebenes kartesisches

$$x = r \cdot \cos \varphi; \ y = r \cdot \sin \varphi$$

$$\begin{pmatrix} \vec{e}_r \\ \vec{e}_{\varphi} \end{pmatrix} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \vec{e}_x \\ \vec{e}_y \end{pmatrix}$$

4.4.2 ebenes Polar

$$r = \sqrt{x^2 + y^2}; \tan \varphi = \frac{y}{x}$$

$$\begin{pmatrix} a_r \\ a_{\varphi} \end{pmatrix} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} a_x \\ a_y \end{pmatrix}$$

4.4.3 Zylinderkoordinaten

$$r = \sqrt{x^2 + y^2}; \tan \varphi = \frac{y}{x}; z = z$$

$$\begin{pmatrix} a_r \\ a_{\varphi} \\ a_z \end{pmatrix} = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

4.4.4 Kugelkoordinaten

$$\begin{aligned} r &= \sqrt{x^2 + y^2 + z^2}; \, \tan \varphi = \frac{y}{x}; \, \cos \\ \begin{pmatrix} a_r \\ a_\vartheta \\ a_\varphi \end{pmatrix} &= \begin{pmatrix} \sin \vartheta \cdot \cos \varphi & \sin \vartheta \cdot \sin \varphi & \cos \vartheta \\ \cos \vartheta \cdot \cos \varphi & \cos \vartheta \cdot \sin \varphi & -\sin \vartheta \\ -\sin \varphi & \cos \varphi & 0 \end{pmatrix} \end{aligned}$$

4.5 Oberflächenintegrale

$$\iint\limits_{(A)} \vec{F} \cdot d\vec{A} = \iint\limits_{(A)} (\vec{F} \cdot \vec{N}) dA$$

 $d\vec{A}$:Orientiertes Flächenelement

 \vec{N} :Flächennormale

5 Weiteres

pq Formel
$$x_{1,2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$$

Mitternachts $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

5.1 Polynomdivision

5.1.1 Polynomdivision

Beispiel
$$(2x^{3} - 6x^{2} - 12x + 16) \div (x + 2) = 2x^{2} - 10x + 8$$

$$-(2x^{3} + 4x^{2})$$

$$-10x^{2} - 12x$$

$$-(-10x^{2} - 20x)$$

$$-8x - 16$$

$$-(8x + 16)$$

$$0$$

5.1.2 Horner Schema

Vereinfachte Polynomdivision

Ergebnis: $2x^2 - 10x + 8$

5.2 Koeffizientenvergleich

zum festellen ob zwei Polynome gleich sind.

- 1. Ausmultiplizieren
- 2. Koeffizienten identifizieren
- 3. Gleichungssystem aufstellen
- 4. Gleichungen lösen

5.3 Gauß'scher Algorithmus

Die Lösung eines Gleichungssystems wird nicht verändert werden man

- die gesamte Gleichung mit einer beliebigen Zahl multipliziert
- eine Gleichung zu einer anderen Gleichung addiert oder von ihr abzieht
- zwei Gleichungen miteinander vertauscht

Mit diesen drei Methoden kann jedes Gleichungssystem in eine Dreiecksform gebracht werden.

5.4 Binomische Formeln

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$
$$(a + b)(a - b) = a^{2} - b^{2}$$

Läst sich eine Gleichung als erste oder zweite binomische Formel gleich Null setzen, so gibt es nur eine Lösung der quadratischen Gleichung.

5.5 Vereinfachungen

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$$
$$\cot x = \frac{\cos x}{\sin x}$$