

Softwaresicherheit

x.509 Certificate Validation: challenges, pitfalls, bugs

Julian Hinxlage, Edgar Schkrob und Johannes Theiner

Fachbereich Technik
Abteilung Elektrotechnik und Informatik

21.11.2019

Übersicht

Grundlagen

Validierung von Extensions

Weitere Probleme

nicht technische Probleme

Fazit

Grundlagen

Validierung von Extensions Weitere Probleme nicht technische Probleme Fazit

Allgemein Zertifikatsstruktur Zertifikatskette

Grundlagen

Fazit

Allgemein Zertifikatsstruktu Zertifikatskette

Allgemein

- Standard der ITU-T
- ▶ auch bekannt als ISO/IEC 9594-8
- ▶ wird in TLS, SSL, HTTPS, und S/MIME angewendet
- ► Vertrauenswürdige Zertifikatsstellen vorausgesetzt

Grundlagen

Validierung von Extensions Weitere Probleme nicht technische Probleme Fazit

Zertifikatsstruktur

- Version
- Seriennummer
- Algorithmen-ID
- Aussteller
- Gültigkeit
- ► Inhaber

- Inhaber-Schlüsselinformationen
- Eindeutige ID des Ausstellers
- Eindeutige ID des Inhabers
- Erweiterungen
- Signatur

Zertifikatsstruktur

```
Certificate:
```

Data:

Version: 3(0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=AT, ST=Steiermark, L=Graz, O=TrustMe Ltd

Validity

Not Before: Oct 29 17:39:10 2000 GMT

Not After: Oct 29 17:39:10 2001 GMT

Grundlagen Validierung von Extensions Weitere Probleme

Fazit

Zertifikatsstruktur

```
Subject: C=AT, ST=Vienna, L=Vienna, O=Home, OU=Web Lab, CN
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
00:c4:...
```

Zertifikatsstruktur

Exponent: 65537 (0x10001)

X509v3 extensions:

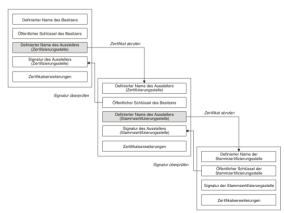
X509v3 Subject Alternative Name:

email:xyz@anywhere.com

Netscape Comment:

mod_ssl generated test server certificate

Netscape Cert Type:


SSL Server

Signature Algorithm: md5WithRSAEncryption

Grundlagen

Validierung von Extensions Weitere Probleme nicht technische Probleme Fazit Allgemein Zertifikatsstruktu Zertifikatskette

Zertifikatskette

Key Usage Critical Extensions Hostname Validation Basic Constraints Name Constraints

Validierung von Extensions

Key Usage

- ▶ die Nutzung des Schlüssels wird limitiert
- ▶ mehrere Werte können angenommen werden
- z.b. kann ein Zertifikat nur eingesetzt werden um andere Zertifikate zu signieren

Key Usage Critical Extensions Hostname Validatio Basic Constraints Name Constraints

KCI Attacke

- ► KCI steht für Key Compromise Impersonation
- es ist eine Man in the middle Attacke
- über Client Zertifikat konnte ein Server Zertifikat ausgestellt werden
- möglich da die Key Usage Validierung nicht richtig implementiert war

Critical Extensions

- ➤ Zertifikate mit unbekannten "critical" Erweiterungen sind ungültig
- ▶ Bekannte "critical" Erweiterungen müssen überprüft werden

Hostname Validation

- ► Hostname des Antragstellers
- Domain bei Webserver Zertifikaten
- ► E-Mail-Adresse bei E-Mail Zertifikaten
- nicht in allen Anwendungsgebieten einheitlich

Basic Contraints

- gibt an, ob ein Zertifikat ein CA Zertifikat ist
- Anzahl der darauf folgenden Zertifikate

Name Constraints

- ► Limitierung von CA Zertifikaten
- welche Art von Zertifikate dürfen in der Kette folgen

Certificate Chain Validation Certificate Revokation Redirection Weak Algorithm Verwendung von Bibliotheken

Weitere Probleme

Validity Dates

- enthält Felder "notBefore" und "notAfter"
- bei fehlerhafter Prüfung könnten abgelaufene Zertifikate genutzt werden

Validity Dates
Certificate Chain Validation
Certificate Revokation
Redirection
Weak Algorithm
Verwandung von Bibliotheke

Certificate Chain Validation

- ▶ alle Schritte müssen für alle Zertifikate in der Kette ausgeführt werden
- ► Root Zertifikate sind selbst signiert

Validity Dates
Certificate Chain Validation
Certificate Revokation
Redirection
Weak Algorithm
Verwendung von Ribliotheke

Certificate Revokation

- Liste von für ungültig erklärten Zertifikaten
- muss angefragt werden, wenn ein Zertifikat überprüft wird
- stellt weitere Anforderungen an die Infrastruktur

Validity Dates
Certificate Chain Validation
Certificate Revokation
Redirection
Weak Algorithm

Redirection

- bei Weiterleitungen muss das Zertifikat des Ziels überprüft werden
- wurde bei der CA StartEncrypt missachtet

Validity Dates Certificate Chain Validation Certificate Revokation Redirection Weak Algorithm

StartEncrypt

- ► Kontrolle über Domain wird häufig über eine vorhandene Datei bewiesen
- ▶ Datei konnte sich hinter einer Weiterleitung befinden
- ▶ gültige Zertifikate wurden ausgestellt

Validity Dates
Certificate Chain Validation
Certificate Revokation
Redirection
Weak Algorithm

Weak Algorithm

- ► Signaturverfahren sowie Hashfunktion wichtig
- unterschiedliche Schlüssellängen
- ▶ längere Zeit wurde die gebrochene Hashfunktion md5 verwenden
- die Wahl des richtigen Verfahrens ist wichtig und für die Sicherheit von Zertifikaten essenziell

Varidity Dates
Certificate Chain Validation
Certificate Revokation
Redirection
Weak Algorithm
Verwendung von Bibliotheken

Verwendung von Bibliotheken

Viele Bibliotheken sind:

- sind kompliziert aufgebaut
- haben schlechte Standardwerte

Verbindungssicherheit Vertrauen in die Zertifikatskette IDN homograph attack Extended Validation

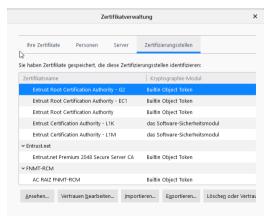
nicht technische Probleme

Verbindungssicherheit

HTTPS & SSL doesn't mean "trust this." It means "this is private." You may be having a private conversation with Satan

- Scott Hanselmann https://twitter.com/shanselman/status/187572289724887041

Verbindungssicherheit


Why is it a good idea to look for a small padlock icon in the browser window when visiting a web shop?

- Because it shows that the web shop is a secure site.
 - Because it shows that the web shop has good offers.
- Because it makes shopping faster.

Taking a mandatory Cyber Awareness Course. The correct answer to this question is: The traffic between the browser and the webshop is encrypted. But the option does not exist. cc @troyhunt
Julian Hinxlage, Edgar Schkrob und Johannes Theiner

/erbindungssicherheit /ertrauen in die Zertifikatskette DN homograph attack Extended Validation

Vertrauen in die Zertifikatskette

Verbindungssicherheit Vertrauen in die Zertifikatskett IDN homograph attack Extended Validation

IDN homograph attack

apple.com vs. xn-80ak6aa92e.com

Unterschiedliche Domains, gleiche Darstellung

Verbindungssicherheit Vertrauen in die Zertifikatskett IDN homograph attack Extended Validation

Extended Validation

Extended Validation Is Broken

By @iangcarroll

Fazit

Fazit

- Libraries zum validieren verwenden
- positive Indikatoren vermeiden
- ► Alternative: SSH

Danke für die Aufmerksamkeit

Literatur I

[1] X. Zheng, "Phishing with Unicode Domains," (14. Apr. 2017), Adresse:

https://www.xudongz.com/blog/2017/idn-phishing/(besucht am 26.10.2019).

Literatur II

[2] T. Hunt, "The Decreasing Usefulness of Positive Visual Security Indicators (and the Importance of Negative Ones)," (7. Mai 2018), Adresse:

https://www.troyhunt.com/the-decreasingusefulness-of-positive-visual-securityindicators-and-the-importance-of-negative-ones/
(besucht am 02.11.2019).

Literatur III

- [3] I. Carroll, "Extended Validation Is Broken," (29. Apr. 2018), Adresse: https://stripe.ian.sh/ (besucht am 06.11.2019).
- [4] R. Housley, R. Laboratories, W. Polk u. a., "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, "RFC 3280, 25. Okt. 2020.

Literatur IV

- [5] D. Cooper, NIST, S. Santesson u. a., "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, "RFC 5280, 2008.
- [6] C. Cimpanu, "Apple, Google, and Mozilla block Kazakhstan's HTTPS intercepting certificate," (21. Aug. 2019), Adresse: https://www.zdnet.com/article/apple-google-and-mozilla-block-kazakhstans-https-intercepting-certificate/ (besucht am 12.11.2019).

Literatur V

- [7] C. Hlauschek, M. Gruber, F. Fankhauser und C. Schanes, "Prying open Pandora's box: KCI attacks against TLS," Techn. Ber., 2015.
- [8] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh und V. Shmatikok, "The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software," Techn. Ber., 2012.

Literatur VI

[9] R. Eikenberg, "Gratis-CA StartEncrypt beginnt mit Sicherheitsproblemen," (2. Juli 2016), Adresse: https://www.heise.de/security/meldung/Gratis-CA-StartEncrypt-beginnt-mit-Sicherheitsproblemen-3252904.html (besucht am 13.11.2019).