Betriebssysteme

Übung 4 ProcessControl

Gruppenmitglieder: Johannes Theiner Semester: Sommersemester 2019 letzte Änderung: 10.04.2019

1 Level B

1.1 Aufgabe

		A	В	\mathbf{C}	D	\mathbf{E}
	Rechenzeit	15	9	3	6	12
	Priorität	6	3	7	9	4
turnaround time	round robin	45	35	13	26	42
	priority scheduling	35	9	39	45	21
	first come, first serve	15	24	27	33	45
	shortest job first	45	18	3	9	30
	shortest remaining time	45	18	3	10	30

	Durchschnitt		
round robin	32,2		
priority scheduling	29,8		
first come, first serve	28,8		
shortest job first	21		
shortest remaining time	21,2		

1.2 Verständnisfragen

1.2.1 Was sind die Gemeinsamkeiten und Unterschiede zwischen shortest job first und shortest remaining time?

Gemeinsamkeiten:

- Laufzeit muss bekannt sein
- $\bullet\,$ kurze Jobs werden bevorzugt
- länge Jobs werden potentiell nicht ausgeführt

Unterschiede:

- Prozess wird bei shortest job first vollständig ausgeführt
- $\bullet\,$ Bei shortest job first kann nichts dazwischen geschoben werden

1.2.2 Welche Scheduling-Algorithmen sind besonders fair?

• round robin

1.2.3 Welche Scheduling-Algorithmen sind besonders unfair?

- priority scheduling
- first come, first serve
- shortest job first
- shortest remaining time

2 Level C

2.1 Aufgabe

	A	В	\mathbf{C}	D	\mathbf{E}
Rechenzeit	15	9	3	6	12
Priorität	6	3	7	9	4
turnaround time	45	21	19	33	41

Durchschnittlicher Turnaround: 31,5

2.2 Verständnisfragen

2.2.1 Wie läßt sich Priorität für Prozesse bei CFS umsetzen?

Zu Begin der aktuellen Ausführung starten des Prozesses wird ein Wert relativ zur Priorität zur execution time addiert.

2.2.2 Warum sind I/O-lastige Prozesse bei CFS nicht benachteiligt?

Da bei der Berechnung der Virtual Runtime nur die Zeit beachtet wird die in der CPU rechnend verbracht wird, wird bei einem wartenden Prozess die virtual runtime nicht verändert.

2.2.3 Wie verhält sich CFS bei mehreren CPU-lastigen Prozessen?

Die Prozesse werden im Verhältnis viel seltener aufgerufen als kürzere Prozesse, da die CPU-lastigen Prozesse durch ihre lange Ausführungszeit eine große virtual runtime erreicht haben.